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Aims: Bioequivalence (BE) trials aim to demonstrate that the 90% confidence inter-

val of theT/R‐ratio of the pharmacokinetic metrics between two formulations (test [T]

and reference [R]) of a drug is fully included in the acceptance interval [0.80, 1.25].

Traditionally, the sample size of BE trials is based on a power calculation based on

the intrasubject variability coefficient of variation (CV) and the T/R‐ratio of the met-

rics. Since the exact value of the T/R‐ratio is not known prior to the trial, it is often

assumed that the difference between the treatments does not exceed 5%. Hence,

uncertainty about theT/R‐ratio is expressed by using a fixed value for the sample size

calculation. We propose to characterise the uncertainty about theT/R‐ratio by a (nor-

mal) distribution for the log(T/R‐ratio), with an assumed mean of log θ = 0.00 (i.e.

θ = 1.00) and a standard deviation σu, which quantifies the uncertainty. Evaluating this

distribution leads to the statistical assurance of the BE trial.

Methods: The assurance of a clinical trial can be derived by integrating the power

over the distribution of the input parameters, in this case, the assumed distribution

of the log(T/R)‐ratio. Because it is an average power, the assurance can be

interpreted as a measure of the probability of success that does not depend on a

specific assumed value for the log(T/R)‐ratio. The relationship between power and

assurance will be analysed by comparing the numerical outcomes.

Results: Using the assurance concept, values of the standard deviation for the

distribution of potential log(T/R)‐ratios can be chosen to reflect the magnitude of

uncertainty. For most practical cases (i.e. when 0.95 ≤ θ ≤ 1.05), the sample size is

not, or only slightly, changed when σ = |log(θ)|.

Conclusion: The advantage of deriving the assurance for BE trials is that uncer-

tainty is directly expressed as a parameter of variability.
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1 | INTRODUCTION

1.1 | Background

Bioequivalence (BE) studies are performed to demonstrate the

pharmacokinetic similarity of a new drug product (test T)

compared with an established product (reference R). These stud-

ies are typically conducted in healthy volunteers in specialised

units for human pharmacology trials. Setup and statistical analy-

sis of BE trials are highly regulated worldwide [EMA1, FDA2],

leaving only limited room for methodological changes or

improvements.
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The key objective of a BE trial is the comparison of the pharmaco-

kinetic metrics Cmax and AUC, which summarise the concentration–

time profile obtained after a single administration of either the test

or the reference product. Both parameters are assumed to be log‐

normally distributed,3,4 so that the comparison can be performed by

estimating the ratio

θ ¼ MT

MR (1)

where MT and MT are the geometric means of the individual metrics

(Cmax or AUC) for the test and reference product.

After logarithmic transformation, the analysis is performed using a

mixed model with adjustments for appropriate covariates, and the

treatment contrast log(θ) = log (MT) − log (MR) and its 90% confidence

interval are derived. BE is demonstrated, if the backtransformed 90%

confidence interval is fully included within the BE margins, typically

with a lower bound of 80% and an upper bound of 125% (Figure 1).

This procedure is called two–one‐sided test procedure (TOST),5 as it

is based on hypothesis testing with one‐sided tests with α = 0.05 as

the level of significance.

Crossover designs—both drugs are given to the trial subjects in

random order—are often used due to their statistical efficiency

because statistical inference is based on the within‐subject variability

while the variability between subjects is removed from the analysis.

This investigation is based on the 2×2 crossover design with 2 formu-

lations and 2 periods.

As is typically the case, we assume that the coefficient of variation

(CV) of the maximum plasma concentration (Cmax) is larger than that of

the area under the plasma concentration–time curve (AUC). Due to

the high correlation between AUC and Cmax, we thus only consider

one TOST using the CV of Cmax for the determination of the sample

size, but the methods could be extended directly to include both

AUC and Cmax simultaneously.

BE trials are generally confirmatory trials, as they aim to reject the

null hypotheses of inequivalence for both metrics. The statistical

power for a BE trial is the probability to correctly reject the null

hypothesis when the alternative hypothesis of equivalence is true,

which is derived conditional on fixed values of all input parameters,

in particular the assumed values for log(T/R)‐ratio and CV.

The key parameter for planning BE trials is the sample size, as

it will determine the cost and duration of the trial, and often

practical considerations about subjects' recruitment schedules.

Hence, a proper sample size calculation is crucial to ensure that

the trial objectives can be met with sufficient probability at appropri-

ate costs.

1.2 | Traditional sample size determination

Six parameters enter the sample size calculation for a BE trial6:

• Significance level α = 0.05 one‐sided – the error that equivalence is

shown despite inequivalent formulations

• Type‐II‐error β — the error that equivalence cannot be shown

despite equivalent formulations; the value π = 1 − β is the power

of the trial,

• BE margins m1 = 0.8 and m2 ¼ 1
m1

¼ 1:25,

• Expected ratio of the BE metrics θ ¼ MT

MR,

• Intraindividual coefficient of variation CV,

• Total sample size N.

The significance level and the margins are fixed by regulatory

guidelines as indicated above. The coefficient of variation can often

be taken from previous pharmacokinetic trials or literature data of

the same drug, as the physicochemical drug properties may control

most of the pharmacokinetic variability of the drug products. The

power is generally chosen as a fixed value between 80 and 90%,

depending on the sponsor's preferences for the desired probability

to meet the trial objective.

The focus of this investigation is the expected T/R‐ratio θ.

FIGURE 1 Acceptance range for bioequivalence tests. CI,
confidence interval

What is already known about this subject

• Sample size planning for bioequivalence trials needs

assumptions on the relative bioavailability (BA) of tested

products and the variability of the pharmacokinetic

metrics.

• Some trial sponsors assume 1.00 as test–reference ratio,

others use 5% or similar deviations from 1.00 to account

for potential differences of the formulations.

• In efficacy trials, the assurance concept is used for

planning the sample size under uncertainty.

What this study adds

• The statistical assurance using a distribution of the test–

reference ratio is a useful concept for planning

bioequivalence trials.

• The uncertainty parameter is easier to interpret than a

fixed deviation from 1.00, while it has similar statistical

properties.
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1.3 | Sample size determination of BE studies in the
literature

When examining published reports of BE trials, it is apparent that

there are different approaches to select the expected T/R‐ratio for

the sample size determination. In a systematic review of recent

reports (2013–2018) of standard crossover BE trials7 it was found that

out of 48 reports that described the details of the sample size calcula-

tion, 12 (25%) trials planned with an expected T/R‐ratio of θ = 1.0,

hence they assumed the maximum power (e.g. Radicioni et al8,

Bosilkovska et al9). In 16 (33%) trials, a value different from 1.0 was

used—in the majority of cases either 0.95 or 1.05 (e.g. Ermer et al10).

The remaining 20 (42%) reports used the limits of a range, such as

0.95–1.05 (e.g. Luo et al11).

This demonstrates a certain heterogeneity of approaches to the plan-

ning of BE trials. Notably, no or only insufficient detail of the sample size

calculation was provided in 78 trial reports, indicating that this informa-

tion is often neglected despite the confirmatory nature of such trials.

1.4 | Objective

The aim of this investigation is to derive the probability of a successful

BE trial not only for a single value of theT/R‐ratio θ, but for a potential

range of ratios. The concept used is called statistical assurance,12,13

which has been introduced for superiority trials. This concept shall

be used to determine the required sample size and to compare out-

comes with conventional power calculations.

2 | METHODS

2.1 | Power of a BE trial

In a sample size determination using the power approach, the power is

determined for exactly one value of each of the 5 other parameters, of

which two are fixed by the regulatory guidelines (significance level α

and margins m1 ¼ 1
m2

), as stated in Section 1.2.

Statistically, the power is determined conditional on these

parameters, in particular on the expected ratio θ and the coefficient

of variation CV.

Typically, the parameter about which the least information is avail-

able when determining a sample size is the ratio θ, because BE trials

are often performed as one shot trials without pilot evaluations in

humans. The best guess for this ratio is often 1.00, as there is generally

no reason to think that one drug formulation has higher bioavailability

(Cmax or AUC) than the other.

By contrast, if there was a difference between the two formula-

tions, this would lead to a loss of power of the BE trial. Figure 2 shows

the power curves for different values of the ratio θ. The power has a

maximum at θ = 1.0, because the distance to both margins is at its

maximum (on the logarithmic scale). Any deviation from unity leads

to a loss of power.

Various formulas to derive the power are available in the literature,

most of which are approximate (but often sufficiently precise6). An

exact solution was provided by Phillips,14 based on Owen's

Q‐function. This derivation is reproduced in the appendix; it has been

implemented in the R‐package PowerTOST.15

In the following, we denote the power for the BE trial by π(θ, CV, n).

When we fix the sample size N and the coefficient of variation CV,

we use the abbreviated symbol π(θ) for the power as a function of

the T/R‐ratio θ.

2.2 | Statistical assurance of a BE trial

We determine the probability of successfully rejecting the null

hypothesis of inequivalence for a potential distribution of T/R‐ratios.

This distribution is formed based on uncertainty about the T/R‐ratio

at the time of planning the trial. Thus, instead of taking a single value

of θ, a distribution Θ of potential ratios θ is considered for the assur-

ance. The statistical assurance γ is then derived as the expected value

of the power over the values of θ, namely:

γ ¼ E π θð Þð Þ
¼ ∫Power ηð Þ·Weight ηð Þ dη:

(1)

The assurance concept is illustrated in Figure 3. The concept fol-

lows the introduction of Chuang‐Stein12 applied to the context of BE.

Figure 3 shows three panels for the components of the assurance.

Panel (A) is the power function for varying values of the T/R ratio θ,

FIGURE 2 Power of a 2×2 crossover trial
using 30 subjects, as a function of the T/R‐
ratio θ, for various values of the coefficient of
variation (CV)
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which is similar to the graphs of Figure 2. It shows that the maximum

power is achieved for θ = 1. For deviations from unity, the power

declines towards both margins.

Figure 3B shows the distribution function Θ, which expresses the

probability for each specific value of θ. We have selected a distribu-

tion function which takes its largest value at θ = 1.00. This means that

the probability for a T/R‐ratio that is in the centre is at its maximum,

because in the absence of conflicting information (e.g. different disso-

lution data) it is likely that the BE metrics following administration of

the two formulations are similar.

However, it is also reasonable to assume that the true value of the

T/R‐ratio differs slightly from 1, for example because of inherent var-

iability of the production process of the formulation. Both directions

would be equally likely, so the distribution function should be symmet-

ric. An appropriate candidate for the weight function is the normal

distribution N(0, σu) with mean 0 and standard deviation σu. The σu is

the uncertainty parameter for the distribution of log(Θ). Less uncer-

tainty implies more probability around the centre value, while more

uncertainty (with a larger σu) leads to larger probabilities for further

deviation from the optimum T/R‐ratio.

The third panel (Figure 3C) shows the product of the above values

for each value of θ. As introduced in (1) the assurance γ is the area

under this product curve, which can be specifically written as follows:

γ σu;CV;Nð Þ ¼ ∫π η;CV;Nð Þ Wσu ηð Þ dη (2)

here π(η, CV, n) is the power function (using a fixed α = 0.05) andWσu ηð Þ
is the density function of the normal distribution (with mean 0 and

standard deviation σu). There is no closed formula for the determination

of the assurance, so that the integral (2) has to be derived numerically.

It should be noted that the limiting case when σu → 0 corresponds

to no uncertainty of the ratio θ, simply leads to the power (with ratio

θ = 1):

γ 0;CV;Nð Þ ¼ π 1;CV;Nð Þ (3)

In the following, the statistical assurance of BE trials will be

examined based on its relationship to the underlying parameters, and

compared to the power approach.

One of the key parameters for determining the conventional

power π is the T/R‐ratio θ. It will be shown that the new uncertainty

parameter σu affects the statistical assurance γ in a similar way.

Furthermore, the application of both methods will be illustrated by

comparing the resulting sample sizes.

The relevant simulations were performed using the statistical soft-

ware R,16 in particular, using the package PowerTOST.15

3 | RESULTS

3.1 | Qualitative comparison of power and assurance

The relationship between power/assurance and the sample size is

shown in Figure 4 based on 2 values of the coefficient of variation

CV. Each panel shows various graphs that indicate the power/

assurance based on different values of the ratio θ or of the uncertainty

parameter σu.

The qualitative relationship between sample size and assurance for

different values of σu (Figure 4) is similar to the relationship between

power and different values of θ. The assurance increases with sample

size and decreases with the increasing values of the uncertainty

parameter σu.

However, the curves differ somewhat when larger deviations of θ

from the value 1.00 are assumed, compared to larger values of σu. The

power curve increases slowly but steadily with increasing sample size,

while the assurance increases more rapidly in the low sample size

range, but then flattens somewhat, so that more assurance requires

a much higher sample size. The reason for this observation is that with

larger values of σu the tail of the weight function (when θ comes close

FIGURE 3 The components of the
assurance concept. (A) The power curve
(similar to Figure 2) for n = 32 (red) and n = 16
(green) subjects (coefficient of variation CV
= 0.2). (B) Probability density functions for θ,
assuming a normal distribution with a
standard deviation σu of 0.03 (solid) and 0.05
(dashed). (C) The product of the functions in A
and B, and all 4 combinations of N and σu are
shown. The assurance is the area under this
curve, which is 98, 80, 95 and 74%
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to the BE margins) becomes heavier, while, by contrast, the power is

indeed very low for these values of θ, so that the assurance remains

low. This is much less the case for σu ≤ 0.05, because the tail of the

weight function is less heavy close to the margin.

Figure 5 compares the sample size required to reach predefined

levels of power (as a function of the expected T/R‐ratio θ) and levels

of the assurance (as a function of the uncertainty parameter σu).

For the power concept, the curve is U‐shaped and hence symmet-

ric, because the sample size has to be increased when log(θ) deviates

from 0.00 to either side. For the assurance curve, the sample size

increases monotone with increasing values of σu because the uncer-

tainty parameter σu can only be positive.

For positive values of θ, the qualitative behaviour of the assurance

curves is similar to that of the power curves. When comparing the

required sample sizes in case of σu = ∣log (θ)∣, slightly more sample

size is required to achieve the same level of assurance compared with

the power.

3.2 | Quantitative comparison

Differences between the assurance and power concepts shall be

illustrated in a numerical example. A BE trial is planned for a new for-

mulation Temozolomide, based on data from a previous trial.17 This

trial has shown an intraindividual CV of 21.4% for Cmax and 5.2% for

FIGURE 4 Power (left) and assurance (right) of a 2×2 crossover trial for a fixed coefficient of variation (CV) of 15% (above) and 25% (below) as a
function of sample size, for different values of θ (left) and σu(right) (while θ = 1). The colours are the same for θ = 1 ± σu, while additional
intermediate values of σu are shown for the assurance graphs

FIGURE 5 Required sample size for a 2×2 crossover bioequivalence trial as a function of the expected T/R‐ratio θ (left) or of the uncertainty σu

(right), for different values of the desired power (left) /assurance (right)
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AUC. The sponsor of the new trial would like to achieve a probability

of success of 90%.

The standard sample size calculation using a power calculation

with θ = 1.00 leads to a sample size of 22 subjects. If the sponsor

wants to account for possible deviations using a different θ, the sam-

ple size would slightly increase, e.g. for θ = 0.95 the required sample

size would be 28 subjects (Table 1a).

Accounting for the possible uncertainty of the T/R‐ratio using the

assurance concept, the sample size to achieve a statistical assurance

of 90% with the uncertainty parameter σu = 0.05 is also 28 subjects

(Table 1b).

Table 1 shows that the sample sizes mostly are similar when using

power and assurance. However, the sample size would be lower for an

assurance of 80% with σu = 0.06 compared to a power of 80% with

θ = 0.94. By contrast, the sample sizes are increased for the assurance

concept when the uncertainty σu gets larger.

4 | DISCUSSION

4.1 | General comparison between power and
assurance

The traditional sample size calculation for BE trials is based on several

parameters, including the expected T/R‐ratio θ. The statistical power

for the BE trial is determined using fixed values for these parameters.

The test formulation has typically not been administered to humans

before, or only in small trials so that there is uncertainty about the phar-

macokinetic concentration–time profile in humans. The optimal case is

a T/R‐ratio θ equal to 1.00. However, any deviation of θ from 1.00

would result in a loss of power, so that it is conservative to allow for

deviations from the optimal value. Our systematic review has shown

that some trial sponsors follow such a conservative approach, while

others assume a value of 1.00 for theT/R‐ratio.

In this paper, we propose a methodology to account for the uncer-

tainty in the T/R‐ratio when determining the probability of a success-

ful BE trial. Instead of assuming a fixed value different from 1.00, we

assume a distribution of values (Θ). Specifically, we propose using a

normal distribution (on log‐scale) with the mean of 0.00 and the stan-

dard deviation σu (implying a geometric mean of 1 for theT/R‐ratio, θ).

The standard deviation σu is a measure of the uncertainty that the

sponsor has about the T/R ratio.

The geometric mean of 1.00 for θ implies that we still assume that

this value is the most likely for theT/R‐ratio, while the distribution indi-

cates that deviations from 1 are accommodated. There would be other

options to select a distribution function Θ with a different shape.

However, the normal distribution plays an important role in both

Bayesian and frequestist statistics to model uncertainties or quantita-

tive errors of mean values. Its simplicity, having a single parameter σu,

motivates it as a good choice for modelling theT/R‐ratio. Furthermore,

pharmacokinetic metrics are generally log‐normally distributed.4

As of now, the uncertainty parameter σu is a new parameter in the

sample size consideration, and hence its value must be chosen empir-

ically. However, this is not much different from the situation before

when the value for the expected T/R‐ratio had to be chosen empiri-

cally. For the determination of the assurance, the uncertainty parame-

ter takes over the conservative fixed choice of T/R‐ratio when it was

selected different from 1.00—hence the number of parameters that

are actually used does not increase.

One option for investigating the uncertainty parameter would be a

systematic review of BE trials. As a preliminary result we found in our

review7 that the variability of the estimated pharmacokinetic metrics

is between 0.05 and 0.07.

The investigations in this paper have shown that for the range of θ

between 0.95 and 1.05, the power curves are numerically similar to

the assurance curves when σu = |1 − θ| or σu = ∣log (θ)|. Although the

power and assurance curves are similar within this range, we have also

seen that the assurance is always slightly smaller than the power, i.e.

γ(σu = |log(θ)|) < π(θ). The numerical difference between the two

methods becomes larger for larger deviations of θ from unity.

Despite this similarity, the two parameters are conceptually quite

different: when a fixed value of θ ≠ 1 is used for the sample size

determination using the power concept, this choice could imply that

the sponsor believes that e.g. the Cmax of the test formulation is differ-

ent to that of the reference. The assurance concept does not lead to

such an interpretation because the assumed distribution is still centred

around 1.00. This assurance concept just acknowledges that the spon-

sor is not sure that the pharmacokinetic metrics are exactly equal.

The difference between the power and the assurance concept

becomes clear when σu is assumed to be much larger than 0.05: In this

case, the distribution of T/R‐ratios that the sponsor would accept as pos-

sible valueswould include values that are beyond the regulatorymargins,

and this should not be a realistic assumption. (This might actually be a

more realistic explanation of the uncertainty of Θ than just using a fixed

value of e.g. θ = 1.05 in the sample size determination of a BE trial.)

TABLE 1 Sample sizes required to achieve (a) a target power for
selected values of the anticipated T/R‐ratio θ and (b) a target assurance
for selected values of the uncertainty parameter σu. The targets have
been set to 80 and 90%, the coefficient of variation (CV) was set to
21.4%. For the values in bold, the sample sizes differ between power
and assurance concept

Target

power/
assurance

(a) Power calculation (b) Assurance calculation

θ n Achieved power σu n
Achieved
assurance

80% 1.00 18 83.3% 0.00 18 83.3%

80% 0.95 22 82.4% 0.05 22 83.3%

80% 0.94 24 81.7% 0.06 22 80.0%

80% 0.93 26 80.1% 0.07 26 81.9%

80% 0.92 28 80.2% 0.08 30 80.3%

90% 1.00 22 91.6% 0.00 22 91.6%

90% 0.95 28 90.4% 0.05 28 90.4%

90% 0.94 32 90.9% 0.06 32 90.3%

90% 0.93 36 90.5% 0.07 38 90.2%

90% 0.92 42 90.8% 0.08 48 90.2%
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4.2 | Implications

The use of the assurance concept for planning BE studies could

change the communication about the underlying assumptions com-

pared to the power concept. The standard deviation of the weight

function, σu, can be understood directly as a measure of uncertainty,

and pharmaceutical companies can select their level of uncertainty

as a strategic decision for their planning of BE trials. Assuming a distri-

bution of T/R‐ratios instead of a single fixed value can be understood

much better by nonstatistical scientists and physicians, in particular

when the distribution around log(1.00) is symmetric. By contrast, the

magnitudes of the parameter values for σu and θ are quite similar, so

that the use of the assurance concept does not necessarily increase

the sample sizes, at least in the relevant range of up to 5% difference.

The assurance concept appears to be of particular practical rele-

vance because the specification of pharmaceutical drug formulations

always leaves room for slight deviations: for example, typical

regulatory limits for batch‐to‐batch variabilities of drug products are in

the range of 5%. This variability is typically not covered by the drug‐

specific CV, because most clinical pharmacology studies which analyse

the pharmacokinetic properties are performed with a single product

batch.18 This might be another good reason for incorporating deviation

from the optimal T/R‐ratio into the sample size calculation of a BE trial.

Currently, it remains an open question whether the choice of

σu = 0.05 could serve as a best guess for quantifying the uncertainty.

The systematic review of recently published BE trials led to the prelim-

inary finding that the distribution of the estimated θ for AUC and Cmax

for trials that successfully demonstrated BE has an estimated standard

deviation of about 0.07. However, a more thorough review might be

warranted, which should take into account the potential for publica-

tion bias affecting unsuccessful or underpowered BE trials.

4.3 | Potential extensions of the concept

The concept of statistical assurance has previously been introduced

and discussed for superiority efficacy trials12,19 as the probability of a

successful trial. In contrast, the power is the probability of rejecting

the null hypothesis when it is false, which is derived conditional on fixed

values of all input parameters.

It was found for those trials that typical sample sizes of phase III tri-

als would lead to an assurance of between 70 and 80%, even if these

trials had been powered for up to 90%. Hence, most trials still perform

traditional power calculations, maybe because scientists are used to

the concept. In this paper, we have shown that for BE trials the magni-

tude of power and assurance are similar for given sample size, so the

concepts lead to similar sample sizes in the context of equivalence

tests. Sponsors could still discuss which value for the uncertainty

parameter they consider as most relevant for their trial planning.

The proposed concept for BE trials can be extended in several

ways: first, it could also capture the uncertainty on the drug‐specific

coefficient of variation CV. As indicated above, this parameter has

typically been estimated in previous pharmacokinetic trials of the drug,

but these estimates are also subject to uncertainty, which can be

incorporated independently using a suitable distribution.20 The uncer-

tainty could be quantified directly in a meta‐analysis of the available

pharmacokinetic trials.

Secondly, the assurance concept could account for sample size

determination when small differences in the dissolution or absorption

would be expected, e.g. from outcomes of in vitro tests and modelled

in vitro in vivo correlations. In this case, a θ ≠ 1.00 for the normal

distribution could be incorporated in addition to the uncertainty

parameter σu, and both parameters could be adjusted independently

of each other, given the available information.

Overall the assurance concept for planning BE trials could be a

valuable method to derive and explain sample size considerations.

Sponsors should be encouraged to account for the uncertainty of

the T/R‐ratio, and the use of a particular parameter (σu) to account

for the uncertainty seems to be a natural option that does not lead

to substantially different sample sizes.
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APPENDIX

Power of the TOST procedure

The power of a statistical test is the probability that the hypothesis H0

(in our case bioinequivalence) is rejected if the alternative hypothesis

H1 (here bioequivalence) is true. In other words, the probability of

correctly accepting bioequivalence is the power of the test.

The power of the two–one‐sided t‐tests (TOST) is thus given by

Power ¼ Prob t1 ≥ t 1−α;n−2ð Þ and t2 ≤ −t 1−α;n−2ð Þjbioequivalence holds
� �

(I)

The t1 and t2 values are the t‐test statistics of theTOSTs described

above.

Owen22 has shown that the pair (t1, t2) has a specific bivariate non-

central t‐distribution and that the power based on that distribution

can be calculated as the difference of two definite integrals (Owen's

Q function):

Power ¼ 1 − β ¼ Qdf −t 1−α; dfð Þ; δ2; 0;R
� �

−Qdf −t 1−α; dfð Þ; δ1; 0;R
� �

(II)

where t(1 − α, df) is the (1‐ α) quantile of a t‐distribution with df degrees

of freedom. df is (N − 2) in case of a classical 2×2 cross‐over design

(using sample size N) and

θ ¼ null ‘true’ð Þ ratio (IIa)

δ1 ¼ log θð Þ − log m1ð Þ
se

ffiffiffiffiffiffiffiffiffi
2=N

p

δ2 ¼ log θð Þ − log m2ð Þ
se

ffiffiffiffiffiffiffiffiffi
2=N

p

R ¼
ffiffiffiffiffi
df

p
δ1 − δ2ð Þ

2·t 1−α;dfð Þ

for log‐transformed pharmacokinetic metrics, where se is the residual

standard error, m1 and m2 are the lower and upper bioequivalence

acceptance bounds (usually 0.8 and 1.25).

The residual variance s2e
� �

is connected to the within‐subject

coefficient of variation CV by

s2e ¼ mse ¼ log CV2 þ 1
� �
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CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp s2e

� �
− 1

q

Owen's Q‐function is defined as:

Qν t; δ; a; bð Þ ¼
ffiffiffiffiffiffi
2π

p

Γ
ν
2

� �
·2

ν−2ð Þ
2

∫
b

a
Φ

t·xffiffiffi
ν

p − δ
� �

· xν−1 ·φ xð Þ · dx (III)

where Γ(x) is the gamma‐function, φ(x) and Φ(X) are the density and

cumulative distribution function of the standard normal distribution,

respectively.

This exact algorithm is implemented in the R package PowerTOST15

via numerical evaluation of the definite integral using the

integrate() function of the R package stats, part of the base

R‐project installation.
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